
DOI: 10.1478/C1V89S1P053

AAPP | Atti della Accademia Peloritana dei Pericolanti
Classe di Scienze Fisiche, Matematiche e Naturali

ISSN 1825-1242

Vol. 89, Suppl. No. 1, C1V89S1P053 (2011)

DIFFRACTION OF A PLANE WAVE ON
A MULTILAYERED GRATING

A. G. KYURKCHANa AND S. A. MANENKOVa∗

ABSTRACT. The two-dimensional problem of wave scattering on a multilayered grating
consisting of dielectric infinite cylindrical bodies with arbitrary cross-section is considered.
The system of integral equations to which the initial problem is reduced is derived. The ef-
ficient algorithm for calculation of periodic Green’s function is offered. The dependencies
for reflected and transmitted field are obtained.

1. Introduction

The paper considers two-dimensional problem of diffraction of a plane wave on a multi-
layered periodical grating. This problem is interesting in a wide class of areas, for example
the structure simulates photonic crystals. To solve the problem we use a modified null field
method (MNFM), which has previously been successfully approved in [1, 2]. The null
field method (NFM) has been offered for the first time by Waterman [3]. The modification
of NFM named in the literature also as a method of T-matrix is successfully used to solve
a wide class of diffraction problems. The basis for the NFM is some relation which is
obeyed everywhere inside the scatterer [1, 2]. If we require that this relation is fulfilled
on some closed surface inside the scatterer the initial boundary problem is reduced to the
integral equation of the first kind relative to unknown current distributed on the surface of
the body. In papers [1, 2] it has been shown that to develop the most high-speed and stable
algorithms the auxiliary surface should be constructed by means of analytical deformation
of the surface of the scatterer. In [1, 2] this version of NFM is called the modified null field
method.

Note also that, in the problem of wave scattering by a periodic grating considered below,
the periodic Green’s function is used. Computation of this function is hampered by certain
factors. Here, the periodic Green’s function is calculated by two techniques [4]. In the case
of large distance (along coordinate which is perpendicular axis of the grating) between
point of source and point of observation, one can use a series obtained by the Poison
formula. In the case when the distance is small it is possible to expand the Green’s function
into a series of cylindrical harmonics.
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2. Derivation of the main relations

Consider the periodical grating consisting of several rows of infinite cylindrical bodies,
whose generatrices are parallel to the axis z. We denote the number of rows by M . Suppose
that the period of each layer is equal to dj where j = 1, 2, . . .M . Note that the bodies of
different layers can differ from one another. Let S0j is the contour of the central element
of j-th layer. We introduce the local coordinate system (xj , yj) connected with the central
element of j-th row of the grating (the coordinates of general system are x = x1, y = y1).
Denoted by r⃗lj = (plj , qlj) is the position vector directed from the origin of j-th row to the
origin of l-th one. Allow that the structure is irradiated by the plane wave

u0 = exp(−ikr cos(ϕ− ϕ0)) (1)

where (r, ϕ) are the polar coordinates, k is the wave number, ϕ0 is the incidence angle of
the plane wave. The diffraction field satisfies the radiation condition at infinity

u1(x, y) =

M
l=1

∞
s=−∞

A±
ls exp(−iwlsxl ∓ iνlsyl) (2)

where wls = χl+2πs
dl

, νls =

k2 − w2

ls, χl = kdl cosϕ0. Here the sign of square
root is chosen so that its imaginary part is not positive. We consider the following continu-
ity conditions is to be fulfilled at the contours S0j

u = ui

∂u

∂n
=

1

ηj

∂ui

∂n

ηj =


µi
j/µ, E-polarization

εij/ε, H-polarization
(3)

where ui is the field inside the central element of j-th layer, ∂
∂n is the derivative along

the outward normal to S0j and ε, µ, εij , µ
i
j are the characteristics of the media outside and

inside the elements of the grating respectively.
Let’s apply MNFM. Specify the contours S0j in the local polar coordinate system:

xj = ρj(ϕj) cosϕj , yj = ρj(ϕj) sinϕj (4)

Then we introduce the auxiliary contours Σ±
0j (inside and outside S0j) as follows

x±
j = ρ±j cosα±

j , y±j = ρ±j sinα±
j (5)

where

α±
j = arg ξ±j (τ), ρ±j = |ξ±j (τ)|, ξ±j (τ) = ρj(τ ± iδ±j ) exp(iτ ∓ δ±j ) (6)

The upper sign in the formulas (6) corresponds to the contour Σ+
0j . The values δ+j and δ−j

are the positive parameters responsible for the degree of deformation of the contour S0j

and τ ∈ [0, 2π]. The choice of δ+j and δ−j is detailed in [1, 2]. In accordance with MNFM
we state the following conditions at the auxiliary contours Σ±

0j :

M
l=1


S0l


ul(r⃗

′
l)
∂Gl(r⃗j , r⃗

′
l)

∂n′
l

− vl(r⃗
′
l)Gl(r⃗j , r⃗

′
l)


ds′l = −u0(r⃗j) (7)
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Figure 1. (a) The dependence of power reflection coefficient for the grating from
identical layers. (b) The dependence of power reflection coefficient for hexago-
nal grating.


S0j


uj(r⃗

′
j)
∂Gi

j(r⃗j , r⃗
′
j)

∂n′
j

− ηjvj(r⃗
′
j)G

i
j(r⃗j , r⃗

′
j)


ds′j = 0 (8)

where r⃗j ∈ Σ+
0j in Eq. (7) and r⃗j ∈ Σ−

0j in Eq. (8) (j = 1, 2, . . .M). We denote vl =
∂ul

∂n′
l

and

Gl(r⃗j , r⃗
′
l) =

i

4

∞
l=−∞

H
(2)
0


k


(xj − x′
l + plj − sdl)2 + (yj − y′l + qlj)2


×

× exp(−isχl)
(9)

Gi
j(r⃗j , r⃗

′
j) =

i

4
H

(2)
0


kij


(xj − x′

j)
2 + (yj − y′j)

2


(10)

Thus the problem is reduced to solving the system of integral equations of the first kind
relative unknown currents on the contours S0j . The system (7), (8) is solved numerically
using collocation technique. The way of calculation of the values Gl(r⃗j , r⃗

′
l) is described

in [4].

3. Numerical results

Figure 1a illustrates the frequency dependence of power reflection coefficient (i.e. the
value Rp = k sinϕ0|R0|2, where R0 is the standard reflection coefficient of zero mode)
for the six-layer grating consisting from the identical cylinders with circular cross-section
or cylinders with superelliptic cross-section. The superelliptic contour is described by the
equation x

a

2q

+
y
b

2q

= 1 (11)

At high magnitude of the parameter q the grating of such geometry is little different from
the grating consisting from rectangular elements. The solid curve in fig. 1a corresponds to
the scattering on the grating formed by circular cylinders and the dashed curve corresponds
to diffraction on the grating formed by the superelliptic cylinders.
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The relative radius of the circular elements is a/d = 0.3 and the values a/d = 0.3,
b = a, q = 10. The distance between the layers is h/d = q12/d = 0.7. The other
parameters are µ = µi = 1, ε = 1, εi = 2 and ϕ0 = 90◦. We compared our results for the
grating of circular cylinders with those presented in paper [5]. The results agree with good
accuracy.

Figure 1b illustrates the dependence of power reflection coefficient for diffraction of
the plane wave on the hexagonal six-row grating. On an axis of abscises the value kL i.e.
the distance between the elements of the grating is plotted. The lattice geometry is that
the horizontal coordinate of odd layers is equal to a half of the period of the grating. We
have considered the grating consisting of circular elements (solid curves in the figure) and
the elements with superelliptic cross-section (dashed curves). The sizes of the elements of
the grating and the distance between the rows are 2a = 0.15λ, h = 3

√
3λ/8 (a = b and

q = 10 for superelliptic elements). The period of the grating d = 0.75λ and µ = µi = 1,
ε = 1, εi = 2.25, ϕ0 = 90◦.
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